Van Ngoc Thinh, Mootnick, A. R., Geissmann, T., Ming Li, Ziegler, T., Agil, M., Moisson, P., Nadler, T., Walter, L., and Roos, C. (2010). Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evolutionary Biology 10: 74 (http://www.biomedcentral.com/1471-2148/1410/1474).
Van Ngoc Thinh1, Alan
R Mootnick2, Thomas Geissmann3, Ming Li4, Thomas
Ziegler5, Muhammad Agil6, Pierre Moisson7, Tilo
Nadler8, Lutz Walter1,9, Christian Roos1,9
1 Primate Genetics Laboratory, German Primate Center, Kellnerweg
4, 37077 Göttingen, Germany
2 Gibbon Conservation Center, PO Box 800249, Santa Clarita, CA 91380,
USA
3 Anthropological Institute, University Zurich-Irchel, Winterthurerstrasse
190, 8057 Zurich, Switzerland
4 Laboratory of Animal Ecology and Conservation Biology, Institute of
Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing
100101, China
5 Siberut Conservation Programme, Department of Reproductive Biology,
German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
6 Department of Clinic, Reproduction and Pathology, Faculty of Veterinary
Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB Darmaga, 16680 Bogor,
Indonesia
7 Parc Zoologique et Botanique de Mulhouse, 51, rue du Jardin Zoologique,
68100 Mulhouse, France
8 Endangered Primate Rescue Center, Cuc Phuong National Park, Nho Quan
District, Ninh Binh Province, Vietnam
9 Gene Bank of Primates, German Primate Center, Kellnerweg 4, 37077 Göttingen,
Germany
Abstract
Background: Gibbons or small apes inhabit tropical and subtropical rain forests
in Southeast Asia and adjacent regions, and are, next to great apes, our closest
living relatives. With up to 16 species, gibbons form the most diverse group of living
hominoids, but the number of taxa, their phylogenetic relationships and their phylogeography
is controversial. To further the discussion of these issues we analyzed the complete
mitochondrial cytochrome b gene from 85 individuals representing all gibbon species,
including most subspecies.
Results: Based on phylogenetic tree reconstructions, several monophyletic
clades were detected, corresponding to genera, species and subspecies. A significantly
supported branching pattern was obtained for members of the genus Nomascus
but not for the genus Hylobates. The phylogenetic relationships among the
four genera were also not well resolved. Nevertheless, the new data permitted the
estimation of divergence ages for all taxa for the first time and showed that most
lineages emerged during four short time periods. In the first, between ~6.7 and ~8.3
mya, the four gibbon genera diverged from each other. In the second (~3.0 - ~3.9
mya) and in the third period (~1.3 - ~1.8 mya), Hylobates and Hoolock
differentiated. Finally, between ~0.5 and ~1.1 mya, Hylobates lar diverged
into subspecies. In contrast, differentiation of Nomascus into species and
subspecies was a continuous and prolonged process lasting from ~4.2 until ~0.4 mya.
Conclusions: Although relationships among gibbon taxa on various levels remain
unresolved, the present study provides a more complete view of the evolutionary and
biogeographic history of the hylobatid family, and a more solid genetic basis for
the taxonomic classification of the surviving taxa. We also show that mtDNA constitutes
a useful marker for the accurate identification of individual gibbons, a tool which
is urgently required to locate hunting hotspots and select individuals for captive
breeding programs. Further studies including nuclear sequence data are necessary
to completely understand the phylogeny and phylogeography of gibbons.
Site by Thomas Geissmann.
For comments & suggestions, please email to
webmaster@gibbons.de
Gibbon Research Lab. Home: |
![]() |