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Abstract 

For conservation purposes, a species’ spatial distribution as well as the density at which it occurs are 

important measures of interest. However, conventional monitoring methods may fail to efficiently 

collect this data on species that are difficult to detect visually or that live in areas difficult to access for 

human observers. A variety of animal species produce conspicuous acoustic signals that can be 

detected over long distances. Researchers can take advantage of this trait with passive acoustic 

monitoring (PAM). Acoustic location systems (ALS) are a form of PAM and are designed to enable 

precise localization of recorded sound events. So far, only few studies investigated practical 

applications of ALS under field conditions in terrestrial systems. This study aimed to explore the 

suitability of an ALS as a tool in population density and home range assessments of vocally active 

species, as well as its ability to collect data for behavioural studies. 

For this study, 20 time-synchronized recording devices were installed in the lowland peat swamp 

rainforest of Suaq Balimbing, Sumatra, Indonesia, covering an area of 300 ha. Using a machine learning 

algorithm, “great calls” of female white-handed gibbons (Hylobates lar) were extracted from a total of 

53 days of recordings from 5 am to 4 pm each, over a period of 9 months in 2017. Caller locations were 

triangulated, and individual calling females were identified using idiosyncrasies in the great call 

structure and the caller location. 

15 individual females were identified that had their home range within or in close proximity to the 

research area. The group density of white-handed gibbons in Suaq Balimbing was 1.4 groups/km2 and 

an average home range measured 0.63 km2. This is the largest home range size reported for this species. 

Gibbons in Suaq produced on average 1.3 songs daily per individual that lasted 14.3 minutes on 

average. Fruit availability did not have an important effect on gibbon singing behaviour, neither did 

the number of neighbouring groups and the distance to them. 

It was shown that ALS is a reliable tool for home range and population density studies of highly vocal 

species such as gibbons under field conditions. I hope that more studies will apply ALS to investigate 

other vocal species such as other gibbon species or birds. Findings from such studies will be beneficial 

for conservation management as well. On the analysis side, the development of a common framework 

for the processing and analysis of acoustic data would be desirable in order to make ALS more 

applicable for conservationists and ecologists with limited programming skills. 
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Zusammenfassung 

Die räumliche Verteilung einer Art sowie die Populationsdichte sind wichtige Messgrössen für den 

Naturschutz. Herkömmliche Monitoringmethoden, die auf der visuellen Beobachtung von Arten 

beruhen, sind jedoch ineffizient bei der Anwendung auf Arten, die schwierig zu beobachten sind oder 

welche in Gebieten vorkommen, die für Forscher schwer erreichbar sind. Eine Vielzahl von Tierarten 

erzeugt auffällige akustische Signale, die über weite Strecken hörbar sind. Diese können sich Forscher 

zunutze machen mit passivem akustischem Monitoring (PAM). Eine Form des PAM sind akustische 

Lokalisationssysteme (ALS), welche eine präzise Lokalisierung aufgezeichneter akustischer Ereignisse 

ermöglichen. Jedoch wurden praktische Anwendungen eines ALS unter Feldbedingungen erst in 

wenigen Studien eingehend untersucht. Die vorliegende Studie bezweckte, die Eignung von ALS als 

Instrument zur Ermittlung von Populationsdichten und Aktionsräumen (Home Ranges) vokaler Arten 

sowie zum Sammeln von Verhaltensdaten zu untersuchen. 

Für diese Studie wurden 20 zeitsynchronisierte Tonaufnahmegeräte im Sumpfregenwald von Suaq 

Balimbing, Sumatra, Indonesien, auf einer Fläche von 300 Hektar installiert. Unter Verwendung eines 

maschinellen Lernalgorithmus wurden aus Aufnahmen von insgesamt 53 Tagen, jeweils von 05:00 – 

16:00 Uhr über einen Zeitraum von 9 Monaten im Jahr 2017 sogenannte „Great Calls“ von weiblichen 

Weisshandgibbons (Hylobates lar) extrahiert. Die Standorte der rufenden Gibbonweibchen wurden 

trianguliert und die Identität der Gibbons anhand von individuellen Merkmalen in der Struktur ihrer 

Great Calls bestimmt. 

15 Individuen konnten so identifiziert werden, welche ihren Aktionsraum innerhalb oder in der Nähe 

des Untersuchungsgebietes hatten. Die Dichte an Gruppen von Weisshandgibbons betrug 1.4 Gruppen 

pro km2 und ein durchschnittlicher Aktionsraum mass 0.63 km2. Dies ist der grösste Aktionsraum, der 

für diese Art berichtet wurde. Die Gibbonweibchen in Suaq produzierten im Durchschnitt 1.3 Gesänge 

pro Tag, welche durchschnittlich 14.3 Minuten dauerten. Die Menge an Früchten, die im Gebiet 

verfügbar war, hatte keinen Einfluss auf das Singverhalten der Gibbons; auch die Anzahl benachbarter 

Gruppen und die Distanz zu ihnen schien keinen Einfluss zu haben. 

Es konnte aufgezeigt werden, dass ALS ein zuverlässiges Instrument ist zur Bestimmung der 

Aktionsräume und Populationsdichten von gut hörbaren Tierarten wie den Gibbons. Ich hoffe, dass 

diese Erkenntnisse das Monitoring von weiteren vokalen Tierarten antreiben werden. Solche 

Untersuchungen kämen auch dem Naturschutz zugute. Ausserdem wäre die Entwicklung einer 

einheitlichen Methodik zur Verarbeitung und Analyse akustischer Daten wünschenswert, um PAM und 

ALS auch Anwendern mit begrenzten Programmierkenntnissen zugänglich zu machen.  
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1. Introduction 

Globally, biodiversity is declining at a rapid rate. Over the past four decades, a decline of 60% of 

vertebrate populations was measured. Habitat loss and degradation form the greatest threats to those 

populations (WWF, 2018). Therefore, an important component for the conservation of global 

vertebrate biodiversity is the protection and conservation of their habitats. For successful conservation 

management, knowledge on where populations occur and at which density, as well as knowledge 

about their requirements for their habitats and resources is crucial. This is why there is a big effort in 

monitoring wildlife populations to determine population densities and their spatial distribution. Next 

to frequently used monitoring methods like camera trapping, GPS tagging or visual surveys, in species 

that use and defend particular areas, territory advertisement signals can be used for gathering data on 

presence/absence or even abundance of members of a species in an area. This information can be 

converted into a density measure for population density estimates. 

Home ranges are an important element of the spatial distribution of many species and influence how 

they interact with their environment. A home range is defined as “that area traversed by the individual 

in its normal activities of food gathering, mating, and caring for young.” (Burt, 1943). Where it is 

economical, animals develop the strategy to defend a part of their home range, restricting access to 

the resources for other individuals or neighbouring groups. Such a part of the home range that is 

defended against intruders is defined as a territory (Burt, 1943). Whether it is economical to defend a 

territory relies on the productivity, predictability and distribution of limiting resources (Powell, 2000). 

Territory holders can defend it through physical encounters and fight. However, fighting is 

energetically costly and includes the risk of injuries or even death. More often, animals use olfactory, 

visual or auditory signals to mark and advertise their territory (Powell, 2000).  

Home range analyses require more detailed data than the abundance of a species in an area. To assess 

home ranges, the identity of the individuals or groups sampled must be known. Furthermore, the 

locations of each group or individual need to be tracked over a longer period to define which area is 

traversed by them during their normal activities. This can be done for example by directly following 

the individuals in the field, or by deploying tracking devices on the animals. Focal follows however 

require habituation of individuals or groups and usually many hours of field observations. GPS tracking 

is a good method to obtain locations of the study animal in a high temporal resolution but is restricted 

to animals of a certain minimum size where the tracking device is not restricting their normal activities, 

and to animals that can be captured to deploy the tracking device. Where these conditions are not 

given, other monitoring methods may be more applicable. A wide range of animal species navigate or 

communicate with conspecifics through acoustic signals. Such signals can often be heard over long 

distances and may contain information on species, individual identity, sex, age or context (e.g. 

Blumstein & Munos, 2005). Researchers have made use of these acoustic signals with passive acoustic 

monitoring (PAM, e.g. Depraetere et al., 2012; Suter et al., 2017). 

 

1.1 Passive acoustic monitoring (PAM) and acoustic location systems (ALS) 

Passive acoustic monitoring (PAM) is a method to obtain data using acoustic cues in the environment. 

It usually includes either human listeners or automated or non-automated audio recording devices. 

PAM was first widely used in the study of marine mammals (Watkins & Schevill, 1972; Gillespie, 2004; 

Mellinger et al., 2007), because sound waves propagate over long distances underwater while visibility 

is low. In the last decade, an increasing number of studies has applied acoustic monitoring methods 

also in terrestrial species including primates (e.g. Heinicke et al., 2015), birds (e.g. Mennill et al., 2006; 
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Bardeli et al., 2010; Frommolt, 2017), large carnivores (e.g. Comazzi et al., 2016; Suter et al., 2017), 

insects (e.g. Ganchev & Potamitis, 2007), and elephants (e.g. Thompson et al., 2010; Zeppelzauer, 

Hensman, & Stoeger, 2015). Automated PAM has been applied in various types of biological and 

ecological studies, be it the study of soundscapes of different ecosystems, often in connection with the 

diversity as well as ‘healthiness’ of its communities (Depraetere et al., 2012; Tucker et al., 2014; 

Burivalova et al., 2018), or as a tool for presence/absence monitoring or population density estimates 

of target species (Marques et al., 2013). 

Over the last few years, new software has been developed, more affordable recording devices became 

available and computational and data storage capacities multiplied, which made acoustic methods 

with automated recording devices increasingly interesting and accessible to ecologists, 

conservationists and behavioral biologists. Combined with artificial intelligence and machine learning 

– a field that is rapidly evolving and increasingly finding applications in all fields of studies and everyday 

life – automated PAM has great potential to become a very useful and powerful tool in biological and 

ecological studies. Its advantages over human observer based PAM methods are obvious: By deploying 

multiple recording devices, a bigger continuous area can be monitored simultaneously. It also allows 

continuous monitoring efforts without disturbing the animals with the presence of humans and in 

areas that are too remote or dangerous to be accessed by human observers. Long-term and continuous 

data of an area becomes easier to collect, and vocal activities can be monitored even during the night. 

Furthermore, recorded sound data can be stored and is available for re-inspection (Sugai, Silva, Ribeiro, 

& Llusia, 2019). 

Another benefit of PAM is the possibility to triangulate the location of the sound source with a suitable 

set up of the recording devices, a so-called Acoustic Location System (ALS). Triangulations of caller 

locations have also been done in human observer based acoustic surveys (O’Brien, et al., 2004; Kidney 

et al., 2016), an approach also referred to as “point counts” (Warren Y. Brockelman & Srikosamatara, 

1993). However, there are a number of constraints to this method, as discussed by Rawson (2010). The 

main problems are the subjectivity of estimations of distance and bearing between observer and the 

heard call, detection probabilities being <1, inability to appropriately extrapolate population density 

estimations to a larger area than the one surveyed, and the lack of a robust method to distinguish 

different calling individuals. This means that despite a large sampling effort, the obtained data can still 

be inaccurate and misrepresentative. 

ALS is able to overcome some of the above mentioned problems. Triangulation methods based on the 

time difference of arrival of an acoustic signal at time-synchronized recording devices offer an 

objective and more precise alternative to the triangulation methods in surveys with multiple human 

listeners. Furthermore, recordings from ALS open paths for more objective methods in determining 

the identity of calling individuals, since the calls can be stored and are available for comparisons and 

as reference for later analyses. Additionally, since an ALS can monitor an area over a greater temporal 

and spatial extent, there is potential to answer questions not only related to population densities, but 

also to the vocal and ranging behaviour of a local population as well as interactions between multiple 

calling individuals. A few studies have applied ALS on terrestrial species, such as Mennill et al. (2006) 

on rufous-and-white wrens (Thryothorus rufalbus), Collier, Kirschel et al. (2010) on Mexican Antthrush 

(Formicarius moniliger) and Spillmann et al. (2015) on Bornean orangutans (Pongo pygmaeus), but 

they mainly focused on assessing the localization accuracy of ALS. Despite its potential, the suitability 

of an ALS for population density estimates, home range analysis and studies on behavioural aspects 

has not been explored extensively in terrestrial systems (but see Collier, Blumstein, et al., 2010; 

Fitzsimmons et al., 2008; Spillmann, Willems, et al., 2017; Wrege et al., 2012). This is where this study 

here focuses on. 
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1.2 Gibbons as study species with ALS 

The ideal study species to test the applicability of an acoustic location system for population density 

estimates, home range analyses and behavioural studies should be highly vocally active, have stable 

home ranges over the study period and should occur in densities high enough that a study area of 

suitable size can be covered in a financially and logistically achievable manner. Such a study species is 

the white-handed gibbon (Hylobates lar). 

White-handed gibbons, also called lar gibbons, are a member of the gibbon family (Hylobatidae), the 

smallest of all apes. They inhabit the forests of South East Asia (Figure 1) and are known as highly 

vocally active animals. Their distinct long-distance calls – often referred to as songs – can be heard 

over distances up to 1 km in a forest habitat (Raemaekers et al., 1984) and serve as advertisement 

signals to defend their territory (Cowlishaw, 1992). Lar gibbons live in small family groups of 2-7 

individuals, consisting of a monogamous mated pair and their offspring (Bartlett, 2003). They occupy 

highly stable home ranges over several years (Bartlett, Light, & Brockelman, 2016). Their diet is mainly 

frugivorous, but they also feed on leaves, flowers and insects (Bartlett, 2009; Bartlett, Light, & 

Brockelman, 2016). According to the IUCN Red List of Species, white-handed gibbons are endangered. 

In fact, 17 out of 18 gibbon species are endangered or critically endangered, the main threats being 

habitat loss and poaching (IUCN, 2008). 

 

Their shyness and agility with which they move through the forest canopy makes it difficult to study 

gibbons in the wild. Therefore, studies on their ecology and behaviour which are a crucial basis for 

successful management and conservation actions generally require previous habituation of gibbon 

groups. The habituation of gibbon groups is a process that can take several months (Cheyne, 2010). 

Therefore, it is not surprising that the majority of scientific publications on the ecology and behaviour 

of wild white-handed gibbons originate from one well established long-term study site called Mo 

Singto in the Khao Yai National Park in Thailand (e.g. Reichard, 1998; Savini et al., 2008; Bartlett, Light, 

& Brockelman, 2016). Population densities and home range sizes were also assessed on populations in 

peninsular Malaysia and on the closely related species of Bornean agile gibbons (Hylobates albibarbis) 

(D. J. Chivers, 1979; 1984; Cheyne et al., 2008). However, there are big differences in population 

Figure 1: Current distribution of white-handed gibbons (Hylobates lar). (IUCN, 2008) 
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densities and home range sizes between the study site in Thailand and those in Malaysia and Borneo. 

PAM and ALS could help shed light on these different findings by estimating population densities and 

home ranges from other field sites with still unhabituated gibbon groups. 

 

1.3 Vocal behaviour of white-handed gibbons 

Raemaekers et al. (1984) classified seven types of loud, long-distance call bouts produced by white-

handed gibbons, which can be generally grouped into three categories: male solo songs, female solo 

songs and duet songs. These loud song bouts are species- and sex-specific. They fall within the 

frequency range of about 400 Hz up to 1600 Hz (Raemaekers et al., 1984). 

 

Duet songs 

Duet songs are only produced by mated pairs (Brockelman & Srikosamatara, 1993; Cowlishaw, 1992; 

Raemaekers et al., 1984) and serve as territorial defense and as advertisement of the mated pair status 

to conspecifics (Cowlishaw, 1992). They are given mostly in the morning hours after dawn and before 

noon, from any location in the gibbon territory (Raemaekers et al., 1984). These duet songs follow a 

clear structure that is consistent over most gibbon species: An introductory phase (Figure 2a), where 

both individuals produce a variety of short notes is followed by the so-called “great call” sequence 

(Figure 2b) produced by the female. Often, the female great call is followed by a short response from 

the male, the “coda” (Figure 2c). Then, both the female and the male engage in the interlude sequence, 

which is similar to the introductory sequence. Interlude and great call sequences are then given 

alternatingly for the rest of the song bout. Such a duet song bout lasts from about ten to thirty minutes 

(Raemaekers et al., 1984; Mitani, 1985). 

 

Figure 2: Excerpt of a white-handed gibbon duet song. a: introductory sequence, male and female participating; b: female 
great call, here composed of nine notes; c: male coda 

 

Great calls 

From all call types present in a duet song, the female’s great call is the most stereotyped. It is only 

produced by females, lasts approximately 20 s and is made up of 6-13 notes (Raemaekers et al., 1984). 

It has a general two-humped shape, the first peak occurring after the first few notes rising up to ca. 

1200 Hz, then falling lower in pitch again before reaching the climax at about 1300-1600 Hz and 

ultimately falling lower again. The exact number of notes varies within the same song produced by the 

individual, as well as between different individuals. However, the general shape of the great call is very 
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consistent within individuals and varies among individuals (Raemaekers et al., 1984). Most great calls 

analyzed in this study showed reoccurring shapes and structures that were characteristic for an 

individual. This complies with findings of Terleph et al. (2015) that individuality is encoded in the 

female great call of lar gibbons. 

Great calls are not only produced in duet songs, but also as isolated great calls and in female solo songs 

by mated adult females, juveniles may join their mothers when singing (Raemaekers et al., 1984). 

Solitary females without an established home range do not sing, widows holding a home range, 

however, may sing occasionally (Leighton, 1987; Cowlishaw, 1992). Female solo songs have the same 

structure as the female’s contribution to the duet song. Moreover, they provoked the same reactions 

as duet songs in both sexes during playback experiments. Therefore, it is concluded that the female 

solo song has the same territorial function as duet songs (Cowlishaw, 1992). 

Due to its characteristics of a) being highly stereotyped and therefore easily detectable by listeners, b) 

being produced in a territorial defense context, c) encoding individual caller identity and d) being 

audible over long distances, the lar gibbon’s female great call is a highly suitable call type for acoustic 

monitoring methods. 

 

1.4 Research questions 

In this study, I investigated an ALS as a potential tool to answer questions on territory locations and 

sizes, group densities and behaviour of a population of unhabituated wild white-handed gibbons in 

Suaq Balimbing, Sumatra, a site where no extensive gibbon studies have been carried out before. 

Finally, this study aims to give recommendations on the use of ALS as a monitoring method in the 

context of wildlife conservation. 

What is the density of white-handed gibbon groups in Suaq Balimbing, Sumatra, Indonesia? 

Lar gibbons were found at densities of <4.0 – 6.5 groups/km2 in Khao Yai National Park, Thailand (D. J. 

Chivers, 1984) and 0.7-2 groups/km2at different sites in peninsular Malaysia (D. J. Chivers, 1979). The 

study site in Thailand is a tropical seasonal evergreen forest (Bartlett et al., 2016), whereas the forests 

in Malaysia are evergreen rainforests without distinct dry seasons (Chivers, 1980). The forests in 

Sumatra are evergreen rainforests as well, so that the group density in Suaq Balimbing might resemble 

the ones in Malaysia. It is important to note that Suaq Balimbing lies in a peat swamp rainforest. A 

study on Bornean agile gibbons (Hylobates albibarbis) carried out in a similar peat swamp forest 

habitat resulted in 2.6 groups/km2 (Cheyne et al., 2008). A similar density is therefore expected for 

Suaq Balimbing. 

Where and how big are the territories of white-handed gibbons in Suaq Balimbing? 

White-handed gibbons are territorial and maintain relatively small but stable home ranges across years 

(Bartlett, Light, & Brockelman, 2016). The gibbons of the well-studied population at Mo Singto in 

Thailand are known to have exceptionally small and highly overlapping home ranges of 0.24 km2 and 

64% overlap on average (Reichard & Sommer, 1997). Gibbons from Khlong Sai study area in the same 

Khao Yai National Park in Thailand had mean home range sizes of 0.31 km2 with 6.9% overlap. Larger 

home ranges are reported from study sites on peninsular Malaysia (0.57 km2, D. J. Chivers, 1984) and 

Sabangau catchment area on Borneo (0.53 km2 with only 15% overlap, Cheyne et al., 2008). It is 

important to note that the method used in this study here relies on the territorial great call to pinpoint 

gibbon location, the derived area of gibbon activity should therefore correspond to a territory rather 

than a home range. Leighton (1987) reported that gibbon territories, defined as the area used 
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exclusively by one group and defended against neighbouring groups, made up 75% of the home range 

of a group. Although this value is likely to differ among different gibbon species and populations, I am 

using it here as an approximation for the conversion from territory to home range sizes. Therefore, I 

am expecting the territory sizes of gibbons in Suaq Balimbing to be in the range of 0.30-0.45 km2. 

How is gibbon calling behaviour influenced by territory intrusion pressure and fruit availability? 

Since the examined great calls are given in a territorial defense context, it is expected that the singing 

intensity such as the rate at which calls are given, the duration of a song bout or the number of song 

bouts produced on a given day is enhanced with higher perceived or actual intrusion pressure by 

neighbouring groups (measured as the number of neighbouring groups and the distance to them). On 

the other hand, singing is energetically costly. In times when food is abundant, more energy can be 

allocated to singing behaviour. Therefore, I expect that fruit availability has a positive effect on singing 

intensity, represented in a higher great call rate, longer song duration and higher number of song bouts 

per day. 

 

In order to test the hypotheses stated above, sound recordings from an ALS were analyzed. The 

collected raw sound data was first processed in these three main steps: 

1) Gibbon great-call detection: using a machine-learning approach based on CNN (convolutional 

neural networks) and MFCC (Mel-frequency cepstral coefficients) as input features. 

2) Triangulation of caller location: making use of the TDOA (time difference of arrival) of the 

sound signals at time-synchronized recording units 

3) Caller identification: discriminating individual female gibbons by idiosyncrasies found in their 

great call structure and by taking into account the spatial information 

The data resulting from these main processing steps was then used to build statistical models on the 

gibbons’ calling behaviour and to assess group densities and the extent of their territories. 
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2. Materials and methods 

2.1 Study area 

The gibbon calls analyzed in this study were recorded in Suaq Balimbing (N03°02.873, E97°25.013), a 

research station managed by the Department of Anthropology of the University of Zurich. The tropical 

lowland peat swamp forest of Suaq Balimbing is located in the southwest of the Indonesian province 

of Aceh on the island of Sumatra (Figure 3). It lies within the Leuser Ecosystem, one of the world’s most 

biodiverse landscapes, that is home to wild orangutans, elephants, tigers, rhinos and sun bears and a 

number of endemic species. The study area covers approximately 7 km2 and stretches from the shore 

of the Lembang river up to ca. 2.5 km inland within the Gunung Leuser National Park to the foot of a 

hill. Being a peat swamp rainforest, the forest floor is almost permanently covered with water. 

 

Figure 3: left: Location of Suaq Balimbing research station (Google Maps); right: Suaq Balimbing peat swamp rainforest 

  

2.2 Data collection 

In this study, audio recordings from 24th January – 15th September 2017 were used. The data on the 

white-handed gibbons in Suaq Balimbing was derived only from acoustic recordings. No additional data 

on behaviour, social structure or identity was collected by field observations, DNA sampling or other 

methods. 

Audio field recordings in Suaq Balimbing were made by Brigitte Spillmann from October 2016 to 

January 2018, analogous to the method described in Spillmann et al. (2015). 16 Song Meter SM2+ and 

4 Song Meter SM3 recording units (Wildlife Acoustics Inc.) were installed in a grid set up (Figure 4). The 

recorders were spaced out over an area of 3 km2 in 500 m intervals. All recorders (Figure 14, Appendix 

I) were time-synchronized and the exact location determined via GPS. Each recorder was powered by 

a 12 V, 18 Ah dry gel battery which was charged by a 50 W solar panel. An omni-directional, 

weatherproof SMX-II microphone was connected to each of the recorders, placed at ca. 10m height in 

the canopy. Sample rate of the recordings was set at 22’050 Hz and the sample size was 16-bit (signed 

PCM). Sound files were saved on conventional SD cards (16 GB and 32 GB memory) in .wac file format 
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and copied onto an external hard drive during monthly recorder checks. They were then later 

converted into .wav files and uploaded onto a server. 

 

Figure 4: Map of the study area in Suaq Balimbing. Grey lines show the trail system. Red dots indicate locations of the 20 
recording units. Distances between neighboring recorders are approximately 500 m. (Background map: ESRI) 

 

Each recorder was programmed to record daily from 5 am to 7 pm, based on activity times of 

orangutans, (the original purpose of the recordings was to monitor orangutan calling activity), 

producing 7 daily recording files of 1 h 57 min length each (“track”). Three minutes between two 

consecutive tracks allowed enough time to save the file and to start a new recording. Starting times of 

the 20 recorders were staggered to ensure that a minimum of 15 recorders were running at all times 

during the day. Gaps occurred in the audio data on days where recorders were malfunctioning or had 

to be maintained (Figure 5). For 7% of the recorded tracks, the built-in GPS of the recording device was 

inactive. Such recordings could not be used for later triangulation of the call location. Nonetheless, a 

total of more than 100’000 hours worth of audio data was recorded over the entire recording period, 

out of which approximately 11’660 recording hours were used in this study. 
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Figure 5: Overview of available recording tracks, from January 2017 to October 2018 (time on x-axis). Each horizontal row 
represents one of the 20 recorders. Blue bar: available sound track; red bar: available sound track without GPS signal (not 
usable for triangulation); white gaps: no recording available. 

 

2.3 Data processing 

 

 

Figure 6: Data processing consisted of the steps to develop and apply a gibbon great call detection algorithm (pre-processing, 
feature extraction, algorithm training and call detection) and post-processing, including the important steps of triangulation 
of caller locations and individual caller identification. The derived data was used for further analysis and hypothesis testing. 

 

Gibbon great call detection 

A machine learning approach was used to detect the female gibbons’ great calls in the sound 

recordings, namely a Convolutional Neural Network (CNN). As input features for the CNN, Mel-

Frequency Cepstral Coefficients (MFCC) were used. MFCC are commonly used in speech recognition 
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tasks and are based on the representation of sound on a logarithmic scale, approximating human 

perception of sound. A number of studies have applied MFCC features successfully in species and 

individual identification tasks in birds (Fox et al., 2008; Cheng et al., 2012), frogs (Lee et al., 2006; Ting 

Yuan & Athiar Ramli, 2013) and primates (Mielke & Zuberbühler, 2013; Spillmann et al., 2017; Clink et 

al., 2019). The use of MFCC features in sound classification tasks has several advantages over 

conventional measurements of acoustic parameters (Mielke & Zuberbühler, 2013). It does not rely on 

the researcher to choose relevant spectral parameters, and thus may pick up features that would not 

be obvious to a researcher but still be relevant for the recognition task. And importantly, MFCC feature 

extraction is fully automated and thus very fast. 

During the pre-processing phase, the training data for the detection algorithm was collected from the 

original sound recordings. Training data consisted of two classes: a) gibbon great calls and b) non-

gibbon great calls. The latter class included gibbon calls other than great calls, calls of other animals in 

the same frequency range as gibbon calls (mainly birds and frogs), male orangutan long calls, people 

talking and singing, background noise such as rain, wind, anthropogenic sounds and noises produced 

by the recording devices themselves. The initial set of training data comprised of 1’105 samples of 

gibbon great calls and 3’932 samples of other sounds. The training data was down sampled from a 

sample rate of 22050 Hz to 3600 Hz to reduce the file size and allow faster computation of the 

subsequent steps. Then the data set was split into a training dataset (70% of samples) and an 

evaluation dataset (30% of samples). The training dataset was further augmented in two steps by 

stretching or compressing the audio data by up to 0.01 seconds and then cutting samples of >15 

seconds into several 15-second frames. Training of the detection algorithm was based on the resulting 

12’648 gibbon great call samples and 16’518 samples of non-great call sounds. 

MFCC feature extraction and training of the CNN was programmed by Raphael Walker using python 

programming language and Google’s TensorFlow tool. 40 MFCC filterbanks were used to extract MFCC 

features in the frequency range of 600-1200 Hz. Restricting the frequency range here helps to avoid 

having high- and low-frequency noises in the training features (e.g. birds, cicadas) and to focus on the 

relevant range where gibbon great calls are produced. Settings for CNN training are shown in Figure 6. 

After successful training, the detection algorithm scanned field recordings from 5-9 consecutive days 

of each month between January – September 2017, 53 days in total (Table 1). The days were chosen 

by the amount of quality data available for analysis after visual inspection of the track overview shown 

in Figure 5 (blue tracks). Only sound recordings from 05:00-16:00 were analyzed, corresponding to the 

general times of the day when white-handed gibbons are active (Reichard, 1998). 

Table 1: Dates and number of days analyzed per month. 

Month Dates analyzed 
Number of 
days analyzed 

January 2017 24.-31. 8 
February 2017 09.-13. 5 
March 2017 22.-26. 5 
April 2017 02.-06. + 15. 6 
May 2017 27.-31. 5 
June 2017 04.-08. 5 
July 2017 12.-20. 9 
August 2017 09.-13. 5 
September 2017 11.-15. 5 
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The resulting great call detections by the algorithm were then inspected each manually to confirm 

whether it is a gibbon great call (true positive) or a false positive detection. Confirmed true positive 

detections became points of interest (POI), and all POI occurring within the same 20 seconds were 

grouped together into call events with a unique call ID. 

The algorithm was kept generous with the number of false positive detections to minimize the number 

of missed great calls (false negatives). On average, the ratio of true positives to false positives was 

1:2.6. Despite the additional step to manually select true positive detections, this process is 

substantially faster than scanning through the same amount of audio data and labeling target calls 

manually. Validation of the number of false negatives (present but not detected great calls) was done 

by manually labeling great calls from the recordings from two days (22 day hours or 427.05 recording 

hours), and comparing to the results of the detection algorithm (Appendix I, Table 8). Although the 

false negative rate on POI level was high with 41.6% (338/813), the algorithm did still detect 82.9% 

(155/187) of all great call events and 100% of the great call events within the recorder grid. As long as 

at least one POI of the same call event was picked up by the algorithm, the call event was registered. 

Additional POI of the same call event were easily found during post-processing. With this validation, I 

am confident to have detected practically all of the great call events from within the recorder grid. 

 

Call source localization 

The location of the detected call events in the study area could be computed if the call event was 

recorded on a minimum of three different recorders. To this mean, the time difference of arrival 

(TDOA) of the acoustic signal at the different recording units was obtained by cross-correlating the POI 

of the same call event. The TDOA between each recorder pair produced a hyperbola of all possible call 

source location. The intersection of two or more of these hyperbolae is the call source location. Hourly 

mean air temperatures, measured directly by each recording device, were accounted for when 

computing the cross-correlation. 

In a forest environment, sound waves are diffracted at different trees and obstacles between sound 

source and receiver, leading to small differences of TDOA compared to sound traveling on a direct path 

in an open area. This can result in inaccuracies of the computed sound source locations. Based on the 

assumption that gibbons do not change their location while engaging in a song bout (T. Geissmann, 

pers. comm.), mean coordinates of each song bout were calculated from the coordinates of all great 

calls belonging to this same song bout. The deviation of each great call location from its mean song 

bout location was then calculated to assess localization error. In general, calls given from outside the 

recorder grid had higher inaccuracies. The mean deviation from song mean coordinates was 44.5m (SD 

±50.9m) for all great calls given from within the boundaries of the recorder grid. Mean deviation was 

still acceptably low with 52.2m (SD ±54.7m) for all great calls given from maximum 200m outside the 

recorder grid. This complies with the findings of Spillmann et al. (2015), where the same ALS set up 

was used for the localization of male Bornean orangutan calls that have a similar reach as gibbon great 

calls. Therefore, for all analyses containing coordinate information, only localized calls at maximum 

200m outside the recorder grid boundaries were used. This area is here referred to as the ‘localization 

area’. 

 

Caller identification 

To be able to ultimately estimate gibbon group densities and territory sizes, different calling groups 

needed to be identified. All previous studies using automated individual recognition of animals by their 

calls had a set of recording samples from identified individuals as reference (Fox et al., 2008; Mielke & 
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Zuberbühler, 2013; Terleph et al., 2015; Clink et al., 2019). However, this was not the case in this study 

and a different approach had to be developed. 

Since gibbons are territorial animals and keep their home ranges over several years (Bartlett et al., 

2016), the location from where a call was given provided a first hint on the identity of the calling 

individual. Two calls given from locations >800 m away were unlikely to be from the same individual. 

This cue was combined with another approach, distinguishing individuals by the great call structure 

and characterizing them by idiosyncrasies. For this, the Fast Fourier transformed (FFT) spectrogram of 

each great call was examined visually, characteristic patterns in the great call structures identified and 

compared to other great calls. In this process, an identification catalogue was established as a 

reference (Appendix II). Apart from differences in the general temporal and spectral characteristics of 

the great call sequence (call duration, number of notes, frequency range), the second note of the great 

call (usually falling together with the first peak note of the call) showed distinct recognizable 

characteristics in shape and frequency range for the majority of calls. These individual characteristics 

were stable within the same call bout as well as across different days for the majority of calls. With this 

method, 15 individual females were identified living within or adjacent to the study area in hearing 

distance. 

To test the reliability of this idiosyncrasies-based identification method, 550 identified call samples 

were used to train and to test a Gaussian mixture model (GMM) in MATLAB. GMM was already 

successfully applied in various studies on human speech recognition and in a caller identification task 

with male orangutan long-calls (Spillmann, van Schaik, et al., 2017). The call samples were shuffled into 

five different training data sets (each containing 80% of each individual’s calls) and five test data sets 

(20% of each individual’s calls). The second note of each call was isolated and the MFCC features 

extracted (12 filterbanks, frequency range 450-1500 Hz) to train the GMM. Due to constraints in the 

number of samples in sufficient quality, only 10 out of 15 identified individuals could be tested. The 

probability to correctly assign the individuals was 10% by pure chance. The GMM correctly identified 

the callers in 70.2% of the cases, thus performing seven times better than by chance. From this I 

conclude that the identification method using location information and idiosyncrasies in great call 

structure is meaningful. 

The social status of the identified females – whether they are solitary or mated – was assessed by 

listening to their song bouts. If a female engaged in a duet song bout, she was classified as an adult 

mated female. A female that only produced solo song bouts but sang from a similar part of the study 

area was suspected to be a widowed individual that still holds a territory, based on the descriptions by 

Leighton (1987). Solitary females without a territory are not known to produce any solo songs 

(Leighton, 1987; Cowlishaw, 1992) and therefore would not be detected with acoustic monitoring. 

 

Acoustic platform 

Gibbon great call detection, call source localization as well as general access and display of the audio 

data stored on a server was facilitated by an acoustic platform. The acoustic platform was developed 

by Raphael Walker and Brigitte Spillmann and could be accessed via an online front end. It allowed 

accessing and processing a large amount of acoustic data in an efficient, organized way: 

The great call detection algorithm could be directly applied on a selected range of audio data. For each 

detection, details such as start time and recorder ID were listed together with a spectrogram, so that 

true positive detections could easily be selected. Selected true positive detections were saved as 

individual POI and pooled together to call events. POI, call events and entire audio tracks could 

individually be accessed, downloaded for local storage and their spectrograms displayed. Furthermore, 
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call lists could be downloaded as a csv file containing details to each call event such as call ID, start and 

end time, coordinates, identification labels etc. 

For the calculation of call locations, POIs could manually be deactivated to ensure correct localization. 

This was useful when not all POI were of good sound quality, e.g. with high background noise. The way 

the localization function was implemented was that a grid with 10x10m cells was superimposed to the 

map of the study area. After computing hyperbola from the time differences between pairs of 

recorders, the coordinates of the cell closest to the intersection point of the hyperbola was assigned 

as the coordinates of the call. 

 

Fruit availability 

Data on forest phenology was obtained from the Suaq Balimbing Research Station. Around the 15th of 

each month, 1’000 trees along two transects in the study area were inspected and the amount of young 

leaves, flowers, total fruits and ripe fruits were noted for each tree. The monthly fruit availability index 

(FAI) was calculated from this data and denotes the percentage of trees bearing fruits. Fruit availability 

ranged between 8.1% and 16.6% for the entire year of 2017 (Figure 7). 

 

 

Figure 7: Fruit availability index measured in Suaq Balimbing for each month in 2017. Mean: 10.3%, min: 8.1%, max: 16.6%. 
FAI values from January to September were used in the analysis.  
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2.4 Data analysis 

All analyses were done using R programming language Version 3.5.1 (R Core Team, 2018) and R Studio 

Version 1.1.423 (© 2009-2018 RStudio, Inc).  Table 2 shows the definition of terms and variables used 

in the analysis. 

Table 2: Definitions of variables and terms used in the analysis. 

Song A sequence of at least two great calls of an individual with time gaps not greater 
than 10 minutes between consecutive great calls. 

Song duration The time difference in seconds between start of the first great call of a song and 
start of the last great call of the same song. 

Great call rate The rate at which great calls were given in a song, in great calls per minute. 
Great call rate = (number of great calls – 1) / song duration * 60 seconds 

Song mean 
coordinates 

Mean coordinates calculated from coordinates of all great calls belonging to 
this same song. 

Response song The first song following another individual’s song no longer than 30 minutes 
after the start of that song and not more than 500m away from the other 
individual’s mean song location. 

Audible song The first song following another individual’s song no longer than 30 minutes 
after the start of that song and not more than 1000m away (can be the same 
as a response song). This is based on the statement that gibbon songs are 
audible over ca. 1 km (Raemaekers et al., 1984). 

Number of 
neighbours 

The daily number of neighbours was determined as the number of groups that 
were singing in hearing distance (1000m) of the focal group on a given day. For 
this, the daily mean location of each singing group was calculated from the 
mean coordinates of each recorded song bout of a group. 

 

Group Density and Territory Analysis 

Using each song’s mean coordinates and caller identity, 95% minimum convex polygons (MCP) were 

calculated as the gibbons’ territories. This was done with the functions provided in the R package 

adehabitatHR (Calenge, 2006). Although kernel utilization densities (KUD) and Brownian bridges (BB) 

are more sophisticated methods for home range analyses (Powell, 2000), the simpler MCP method 

was considered to be better suitable for the sparse temporal resolution of relocations in this study. 

Because each song bout led to one location registered, there were only few location data points per 

day for any of the groups. Both KUD and BB highly overestimated the extent of the gibbon territories 

to areas where no great call of a particular individual was found. KUD and BB methods also resulted in 

highly overlapping polygons, which are untypical for the territorial gibbons. 

Only data points from maximum 200m outside the recorder grid were used, due to localization 

inaccuracies for call locations further out. This means that territory sizes for groups at the edge of the 

study area were not adequate and only represented a part of their real territory. 

The gibbon group density in Suaq Balimbing was determined as the number of groups resident within 

the study area divided by the size of the localization area (5 km2). As residents, groups were counted 

that had a majority (>50%) of all their songs localized within the localization area and that were 
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detected on more than 17 days (>33% of days analyzed). Since there is no information on the group 

size of in the study area, the density estimation can only be made on group level. 

 

Influence of territory intrusion pressure and fruit availability on singing intensity 

Statistical analyses of the gibbons’ singing behaviour were first done on day level where songs from all 

individuals were aggregated, and then on individual level where for each day, the songs of different 

individuals were grouped separately. Two days where it was raining heavily (28.01.2017 and 

15.04.2017) were excluded from this analysis, because the rain might have influenced the detection 

rate of great calls on these days, which affects the calculated call rates and song durations. 

On day level, the hypotheses on gibbon calling behaviour were tested with linear models (LM) and 

generalized linear models (GLM). I tested whether fruit availability and the number of groups singing 

on that day have an influence on the total number of songs produced, the mean song duration and the 

mean great call rate. 

Hypothesis testing on individual level was done using linear mixed-effects models (LME) and 

generalized linear mixed-effects models (GLME) in the R package lmerTest (Kuznetsova, Brockhoff, & 

Christensen, 2017). Different models were built where the singing intensity was represented by the 

response variables number of songs given, mean song duration and mean great call rate. Fixed 

variables were fruit availability, the number of neighbours, and if a song classified as a response (n=23) 

or audible song (n=57) (Table 2), the distance to the song to which the individual responded and the 

distance to the song to which the individual was in hearing distance. All models on individual level 

contained the individual as random effect. 

To test whether response variables differed significantly between individuals, ANOVA (for continuous 

data) and Kruskal-Wallis tests (for count data) were used. Models on individual level were built only 

for response variables that differed significantly between individuals. For each response variable, the 

model with the lowest AIC value was selected as the best fitting model.  

 

 

3. Results 

3.1 Gibbon great call detection and call source localization 

Running the great call detection algorithm was substantially faster than scanning all audio files visually. 

It took about 1.5 h – 2 h to run the detection task for one recording day (approximately 132 recording 

hours = 11 hours * 20 recorders), while manual labeling took about 5 min per 2 h recording, adding up 

to 5.5 h for 132 recording hours (and this was purely for labeling the calls, without any cutting and 

separate storage of the detected calls). A day worth of recordings resulted in 194-584 detections. The 

number of detections and especially the ratio of true positives to false positives was highly variable 

and seemed to be highly affected by weather conditions as well as human activities in the forest. High 

background noise levels from rain, wind and chainsaw sounds often led to false positive detections 

only containing noise. The sound of talking people in the forest was also often confused as great calls 

by the algorithm. The average ratio of true positive detections to false positive detections was 1.4 

(range 0.1-25.8) per recording day. 
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From the 53 days analyzed over the study period of 9 months, 3352 great call events were detected. 

47.8% (1601) of all detected great call events could be localized, 37.9% of the call events (1271) were 

given from inside the defined localization area. For 85.7% (2871) of all detected great calls, the calling 

individual could be identified. Calls that could not be identified were of low quality (signal too weak), 

were overlapped by noise from other animals or human activity (chainsaw noise) or the call structure 

did not match clearly with the characteristics of one of the identified individuals. The detected calls 

belonged to a total of 465 song bouts (containing >1 great call) given by identified individuals, which 

means that on average, 8.8 song bouts were detected on each survey day. 317 (68.2%) songs could be 

localized, 279 (60.0%) of them were located within the localization area.  

The heat map in Figure 8 shows the distribution of all localized great call events within the localization 

area. It becomes obvious that there are areas where gibbon singing activity was very low, and areas in 

the south and north east end of the study area that had high singing activities. 

 

Figure 8: Heat map representation of gibbon great call activity. Purple x's mark locations of recorders. 
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3.2 Group density and territory analysis 

Group density 

During the entire study period from January 2017 – September 2017, 15 females were identified and 

given individual names (see Table 3). With the exception of two females Jolli and Ximena, all females 

engaged in duet songs, from which we can conclude that they are adult mated females. Jolli was only 

found in solo songs, and also sang on only 10 out of 53 days surveyed but always sang from a similar 

region in the study area. From this, I suspect that she was a widowed adult female who still held a 

territory and advertised it but had no partner to do so in a duet. The social status of Ximena is unclear, 

since all her songs were given from the margin of the study area and had low signal to noise ratios. It 

was therefore not possible to hear whether the detected great calls were part of a duet song or a solo 

song. 

Calliope disappeared from the study area after April 2017 and was not detected until the end of the 

study period. In May, a new individual Inna appeared and occupied Calliope’s former territory area 

until August 2017. Then Inna was not found anymore in September 2017 but Filippa, a neighbouring 

individual, seemed to have shifted her territory to the west and took over part of Inna’s former 

territory. Jolli also moved further south than she was found in the months before Inna disappeared. 

These shifts in territory occupation can be seen in Figure 15, Appendix I.  In all months, there was a 

maximum of 14 groups present in hearing distance, and probably only 13 groups in September. On 

average, 8.4 (range: 3-13) different groups were detected on each survey day. 

According to the definition that a female classified as a resident when a) her calls were detected on 

more than 17 days (>33% of days surveyed) and b) when more than half of her songs were localized 

within the localization area, there were six resident females in the study area (Table 3). Although Jolli 

was heard on less than 17 days, her territory was lying entirely inside the study area, surrounded by 

neighbouring groups on all sides. Therefore, she should be counted as a resident as well, adding up to 

7 resident females. Calliope was also detected only on 17 days because she disappeared after the first 

four months. But she should be counted as a resident for the time before she disappeared and her 

territory was taken over by the new individual Inna. To sum up, before Inna disappeared from the 

study area in September, there were a total of 7 groups resident within the localization area of 5 km2. 

This leads to a white-handed gibbon density of 1.4 groups/km2. Filippa, Solfaya, Tepe and Tsubasa were 

four often heard females whose groups seemed to reside adjacent to the study area. Undulani and 

Ximena were heard less frequently, their territory seemed to touch the study area only marginally. On 

average, only 4 (range: 2-5) consecutive survey days were required until all resident groups were 

detected, and only 2 (range: 1-3) days were required if the rarely singing widow Jolli was ignored. 
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Table 3: Resident group criteria and status of all 15 identified individuals. Criteria that are fulfilled to qualify as a 
resident group are in bold. 

Individual 
Number of 

days detected 
% of localized songs 

within localization area Resident status 

Calliope 17 93% YES (special case: disappeared) 

Filippa 42 38% NO 

Gemma 45 84% YES 

Inna 23 57% YES 

Jolli 10 100% YES (special case: widowed) 

Kokorani 26 59% YES 

Levina 46 64% YES 

Nalingi 34 11% NO 

Ratu 36 61% YES 

Solfaya 47 29% NO 

Tepe 18 8% NO 

Tsubasa 37 15% NO 

Undulani 5 17% NO 

Ximena 17 36% NO 

Yuna 40 80% YES 

 

 

Territory analysis 

Localization and identification of detected great calls resulted in a data set with 779 data points 

indicating the mean location of each song (including songs with only 1 great call; Figure 9, left). From 

these, only the 398 locations lying within the localization area (Figure 9, right) were used to calculate 

territories as 95% MCP, seen in Figure 10. Due to small sample size, the territories of Undulani and 

Tepe could not be calculated.  

 

Figure 9: Left: all localized and identified gibbon song locations between January - September 2017. Right: locations of 
localized and identified songs only within the localization area. This is the data basis used for territory analysis. Blue line: river; 
X’s: locations of recording devices of ALS. 
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Due to the fact that all localizations lying outside the localization area were ignored for this analysis, it 

only makes sense to report territory sizes of groups living inside the study area. This was true for the 

individuals Calliope (light red), Gemma (beige), Jolli (light green), Ratu (green, south west) and Yuna 

(pink, south east). I am cautious about the groups of Inna, Filippa, Nalingi, Solfaya and Levina, as they 

all had their territory at the edge of the study area, and it was likely that the extent of their real territory 

could not be sampled with the recorder grid used. For Inna (olive green), Filippa (orange) and Nalingi 

(green triangle) in the south, there were many more detections of their calls than the ones that could 

be localized. In many cases, their calls were recorded only by one or two recorders and did not allow 

localization. There were many localizations for Levina (light blue, east), Ximena (magenta, north east), 

Solfaya (dark blue, north west) and Tsubasa (purple, west) that lay outside the localization grid 

(Figure 9). Although according to the criteria, Kokorani (dark green, north east) was classified as a 

resident, her territory was too marginal for the calculated territory size to be accurate. 

The average territory size for white-handed gibbons in Suaq Balimbing, based on the five central 

groups (Table 4), resulted in 0.47 km2 (SD ±0.21). Under the assumption that a gibbon territory covers 

approximately 75% of a home range (Leighton, 1987), an average gibbon home range in Suaq 

Balimbing measured 0.63 km2. Jolli, the widowed individual, had a much smaller territory than the four 

mated individuals, between half and a quarter of the territory size of the mated females. 

 

 

Figure 10: 95% MCP territories of identified gibbon groups. Individuals Tepe and Undulani are missing here, due to limited 
number of data points for a territory analysis. Blue line: river; X’s: locations of recording devices of ALS. 
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Table 4: Territory sizes of groups located inside the study area (left) and groups that have their territory at the border of the 
study area (right). 

 Central groups Territory size (km2)   Marginal groups Territory size (km2) 

Calliope 0.50   Filippa 0.35 

Gemma 0.56   Inna 0.35 

Jolli 0.18   Kokorani 0.04 

Ratu 0.72   Levina 0.16 

Yuna 0.35   Nalingi 0.10 

    Solfaya 0.21 

    Tsubasa 0.14 

    Ximena 0.08 

 

For three out of the five central groups, the cumulative territory size reached an asymptote with data 

from about 32 survey days (Figure 11). The territory sizes of Jolli and Yuna increased suddenly at the 

end of the study period, which falls together with the period when Inna disappeared and Jolli and Yuna 

set foot closer to Inna’s former territory area (Figure 15, Appendix I). 

 

 

Figure 11: Cumulative territory size, showing how the computed territory size increased with increasing number of survey days. 
For Jolli, only very few calls were detected and only after 23 survey days, enough data points were available to compute a 
territory size. 

 

 

3.3 Influence of territory intrusion pressure and fruit availability on singing intensity 

Analyses on day level 

On average, the gibbons in Suaq Balimbing produced 5.25 (SD ±2.11) songs per day, 1.32 (SD ±0.62) 

songs daily per individual. Songs lasted on average 852.8 (SD ±580.8) seconds or 14.3 (SD ±9.7) minutes 

and great calls were given at a rate of 0.37 (SD ±0.1) great calls per minute. The analysis on day level 

showed no effect of fruit availability on the total number of songs produced, the best fitting model 

contained only the number of singing groups (Table 5). However, fruit availability had a significant 

positive effect on the mean great call rate (z=2.3, p=0.03), increasing it by 0.01 great calls/min (SE 
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±0.004). But it is hard to believe that such a small change is of importance for the calling behaviour of 

gibbons. The maximum change in fruit availability at Suaq Balimbing in 2017 was 8.5%. This would lead 

to a maximum increase of the call rate by 0.085 great calls per minute. The mean song duration could 

not be explained by fruit availability nor the number of singing groups, the null model was the best 

fitting model.  

Table 5: Results of best fitting models on day level to predict the number of songs, mean song duration and mean great call 
rate. N = 51 days. 

 fruit availability number of singing groups 

Response variable SE z value p value SE z value p value 

number of songs - - - 0.03721 6.032 1.62e-09 

mean song duration - - - - - - 

mean great call rate 0.004433 2.301 0.0256 - - - 

 

Analyses on individual level 

Significant differences between individuals were shown for the number of songs (Kruskal-Wallis, χ2= 

29.56, p= 0.005), mean song duration (ANOVA, F=2.41, p=0.005) and mean great call rate (ANOVA, 

F=7.62, p=4.1e-12).  However, the duration of songs produced by different individuals was close to the 

average for all individuals except for Tsubasa (Figure 12). When Tsubasa was excluded from the 

analysis, song duration did not differ anymore between individuals (ANOVA, F=1.56, p=0.11). 

Therefore, the results of the song duration model below should be regarded with caution. 

 

Figure 12: Left: song duration of different individuals. Right: great call rate of different individuals. Boxplots show the median 
(black horizontal line) and the interquartile range (within boxes). Whiskers extend to the values laying at most 1.5 times from 
the upper and lower quartiles. Points beyond this range are outliers (black dots). Red line: overall mean song duration and 
great call rate, respectively. Undulani is missing from this analysis because there was only one song of hers detected. 

 

When comparing the great call rates of different individuals (Figure 12, right), Inna – the individual 

who took over Calliope’s territory after she disappeared – stands out with very high great call rates. 

When inspecting the great call rates of Inna, Calliope and their neighbours by month (Figure 13), one 

can see that in the period from May to August, when Inna presumably had to establish herself in her 

new territory, the great call rates of the neighbouring females tend to be higher than before. This is 

especially distinct in Filippa’s great call rates. Since Filippa is a direct neighbour of Inna and occupies 

the very southern part of the study area as well, it intuitively makes sense that her calling behaviour is 

affected the most. I suspect that such changes in territory occupation and the need for a group to 



  3. Results 

26 
 

establish themselves in a new territory will affect their calling behaviour, as well as the calling 

behaviour of direct neighbours. However, this hypothesis was not further tested statistically in the 

scope of this study. 

 

 

Figure 13: Great call rate per month for Calliope, who disappeared from the study area and Inna, who then occupied Calliope’s 
former territory, and their neighbours. Only songs within the localization area are considered. Red line: average great call rate 
of all individuals in the study area over the entire study period. Grey vertical lines: approximate times when Calliope and Inna 
disappeared from the study area. 

 

The model with the lowest AIC value to predict the number of songs given on a day by different 

individuals contained as fixed variables the number of neighbours and the distance to the song the 

individual responded to. However, neither of the variables was significant (Table 6). 

Table 6: Model output of best fitting model for the number of songs given by an individual on a day. N = 209. 

Fixed variable Estimate SE z value p value 

Number of neighbours 0.0494656 0.4056527 0.122 0.903 

Distance to responded song -0.0005434 0.0019942 -0.272 0.785 

 

For mean song duration, the best fitting model contained fruit availability, number of neighbours and 

the distance to the song the individual responded to. The number of neighbours had a significant 

positive effect on mean song duration (z=2.442, p=0.0425), increasing it by 419.865 seconds (SE 

±171.903) or 7.0 minutes (Table 7). 

Table 7: Model output of best fitting model for mean song duration. Significant fixed variable in bold. N = 209. 

Fixed variable Estimate SE z value p value 

fruit availability 36.083 49.578 0.728 0.488 

number of neighbours 419.865 171.903 2.442 0.0425 

distance to responded song 1.012 0.926 1.093 0.3042 

 

The mean great call rate was best fitted by the null model, meaning that none of the defined fixed 

variables were able to predict the mean great call rate. 
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4. Discussion 

This study investigated and confirmed the suitability of an acoustic location system (ALS) as a tool for 

frequently used analyses in wildlife monitoring and conservation, namely group density estimation and 

territory analysis on the example of white-handed gibbons in a peat swamp rainforest in Sumatra. 

Gibbon calls recorded with the ALS could successfully be localized and the calling individuals were 

identified with a manual identification method based on call source locations and idiosyncrasies in the 

structure of female great calls. This allowed the assessment of gibbon group density and territory sizes. 

It was also possible to collect quantitative data on vocal and ranging behaviour. Simple statistical tests 

were carried out to relate these behaviours to territory intrusion pressure and environmental factors 

(fruit availability), but there is potential for additional hypotheses to be tested with the data. 

 

4.1 Group density, territories and behaviour of gibbons in Suaq Balimbing 

Group density 

At our study site Suaq Balimbing, the density of white-handed gibbon groups was 1.4 groups/km2. This 

is within the range of group densities found in peninsular Malaysia (Kuala Lompat: 0.7 groups/km2, 

Gittins & Raemaekers, 1980; Tanjong Triang: 2 groups/km2, Ellefson, 1968) and Borneo (2.6 

groups/km2 for Bornean agile gibbons, Cheyne et al., 2008). The group density of the population in 

Khao Yai, Thailand, lays on the upper end of the spectrum with 6.5 groups/km2 (Chivers, 1984). 

Gibbon territories and spatial distribution 

The comparably low group density in Suaq was coupled with a large home range size. The average 

territory size was 0.47 km2, resulting in an average home range size of 0.63 km2 assuming that gibbon 

territories covered 75% of a home range (Leighton, 1987). This is larger than any of the home ranges 

reported in the literature for Hylobates lar. Gibbon home ranges measured 0.20-0.58 km2 in peninsular 

Malaysia (Gittins & Raemaekers, 1980; Whitten, 1984), 0.53 km2 in Borneo (Cheyne et al., 2008) and 

approximately 0.24 km2 in Thailand (Reichard & Sommer, 1997; Bartlett et al., 2016). A study on 

orangutans revealed that the home ranges of orangutans in Suaq Balimbing were significantly larger 

than home ranges of any other orangutan population recorded (Singleton & van Schaik, 2001). They 

proposed that the low food plant species richness in swamp forests drives the orangutans to maintain 

a larger home range in order to uphold an adequate diet. This may apply to the gibbons of Suaq as 

well. On top of that, fruit availability is relatively stable year round in Suaq Balimbing. This was also 

true for 2017, when the fruit availability index ranged between 8% and 16%. The constant supply of 

high energy food sources without periods of food scarcity might enable the gibbons to maintain and 

defend a larger territory than in forests where there are periods of fruit scarcity, such as for example 

in Khao Yai, Thailand (FAI: <1% - 12%, Bartlett, 2009), and Sabangau, Borneo (FAI: <1% - 8%, Cheyne, 

2010). 

The territories were more spread out in the western half of the study area, where only 4 out of 15 

identified groups were found (Figure 10). The remaining 11 groups were concentrated in the eastern 

half of the study area, especially in the southeast, where 7 groups were found. Possible explanations 

for this distribution of gibbon groups may be habitat characteristics and the presence of sympatric 

gibbon species. Hamard (2010) found that canopy cover and tree height are strongly correlated with 

gibbon density. In the northwest, the study area is bordering on the Lembang river, which comes with 

a transition to a different plant species composition (more spiny, palm-like plants, fewer large fruit 

trees) and more open canopy as well as higher swampiness compared to the rest of the study area. In 

contrast, on the southern end, the forest floor is dryer than the rest of the study area, potentially 
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supporting higher trees and higher canopy coverage. There is, however, no systematically collected 

data available on differences of these habitat characteristics within the study area to test this 

hypothesis. On the other hand, siamangs, another member of the family Hylobatidae, are known to 

occur sympatrically with lar gibbons (Grether, Palombit, & Rodman, 1992). Siamangs were heard 

regularly in Suaq Balimbing and their calls were also present in the sound recordings. An assessment 

of siamang locations and territories using ALS could reveal whether they affect the spatial distribution 

of lar gibbons in Suaq Balimbing. 

The territory analysis using ALS over a period of several months also revealed anecdotal but not less 

interesting events of changing territory ownership. Calliope, a mated female occupying a territory in 

the southern part of the study area, disappeared after the first four months analyzed. In her place, a 

new individual Inna entered the study area and occupied Calliope’s former territory for at least four 

months. It seems that after that, Inna also disappeared from the study area and shifts of the territory 

boundaries could be observed for two neighbouring groups. This is the kind of data that could only be 

collected with regular focal follows of habituated gibbon groups. It would be difficult to obtain such 

data in the same extent with other monitoring methods such as camera trapping or even with regular 

surveys with human listening posts. Even with focal follows of habituated groups, it would require 

several follow teams to cover the extent of the study area in order to get a holistic view on what is 

happening in the entire study area. But now we may ask, what happened to Calliope? It can be 

speculated about different explanations. First, Calliope might have died a natural death. Terleph et al. 

(2016) found that call features such as the frequency range of climax notes, maximum F0 frequency 

and the “duty cycle” of a climax decreased with age. Thus, a further investigation might reveal whether 

Calliope was an old individual who might have died a natural death. Second, Calliope might not have 

died but been evicted by Inna. Although gibbons have very stable home ranges over the course of 

many years (Bartlett et al., 2016), several changes of adult group compositions as well as territory take 

overs by males as well as by females have been observed (Brockelman et al., 1998). Certainly, there 

are more explanations possible, such as predation or the effects of human disturbances. 

 

Gibbon calling behaviour related to territorial intrusion pressure and fruit availability 

Fruit availability was shown to have a significant positive effect on the overall mean great call rate 

given by all individuals. However, this effect was so small that it is questionable whether it is of any 

importance for the gibbons. Fruit availability had no effect on the total number of songs produced, nor 

on the mean song duration. On the level of individuals, no effect of fruit availability was shown on 

gibbon singing behaviour either. This complies with the findings of Cheyne (2008), where no significant 

change was observed in gibbon singing behaviour in periods of low food availability. It should be noted 

though, that fruit availability did not vary greatly between different months in Suaq Balimbing, so there 

may have been no need for the gibbons to change their singing behaviour, as food and therefore 

energy was never in short supply. 

Only one of the defined variables reflecting a measure of territorial intrusion pressure, namely the 

daily number of neighbours (defined as the number of groups singing within 1000 m distance of the 

focal individual on a given day), was found to have a significant positive effect on the mean song 

duration. None of the other variables (distance to songs in hearing distance and to songs the individuals 

responded to) had an influence on the number of songs an individual produced, the mean song 

duration and the mean great call rate. 

Although no significant relationships were found between most of the variables tested, it was possible 

to derive quantitative data on gibbon calling and ranging behaviour using the ALS. There is potential 

for more in-depth analyses to be carried out using the obtained data, for example by defining measures 
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that may better reflect the territory intrusion pressure than the ones investigated in this study. The 

great call rates of several individuals showed distinct differences between the time period before the 

new female Inna settled in the study area and the months thereafter. The correlation between the 

novelty of an individual’s territory and the calling behaviour of the new individual and its neighbours 

would be another interesting question to look into. 

 

4.2 ALS as a tool for gibbon passive acoustic monitoring 

ALS proved a suitable method for the monitoring of wild, unhabituated gibbon groups. This is a great 

chance for conservation and monitoring activities, especially in habitats such as the peat swamp 

rainforest in Suaq Balimbing, where field conditions make data collection via focal follows cumbersome 

for researchers. 

A main advantage of ALS is the possibility to simultaneously monitor all the gibbon groups in the study 

area. In the same amount of survey time, more data could be collected on gibbon calls than studies 

using point count approaches with human listening posts or focal follows. During the 53 days analyzed, 

3352 great call events were detected which belonged to a total of 465 song bouts given by the 

identified individuals. This is an average of 8.8 song bouts detected per survey day. Compared to 

studies relying on human listeners, this is double the output. Cheyne (2008) recorded 210 song bouts 

from 12 groups of Bornean agile gibbons (Hylobates albibarbis) within 50 survey days (in a survey area 

covering 4.62 km2), while Chivers and Raemaekers (1980) recorded 1139 call bouts during 269 days of 

field observations over the course of 10 years. This results in an average of 4.2 recorded song bouts 

per survey day, half the output of the ALS used in Suaq Balimbing. This is likely due to the larger 

detection area covered by this ALS with 20 recording units in comparison to the studies using fewer 

simultaneous listening posts. A direct comparison study, however, would confirm whether the 

increased call detection in Suaq can be fully accredited to the monitoring method using ALS or whether 

there are true differences in the call production rate between the studied populations. In this study, 

an average of 8.4 (range: 3-13) different females were detected on each survey day and 4 (range: 2-5) 

survey days were required to detect all resident females. This is similar to the 5 days reported by 

Cheyne et al. (2008) until all groups were heard. 

Recording the gibbon calls with 20 time-synchronized recording units also allowed an accurate 

localization of the callers, with mean localization errors of only 52.2m (SD ±54.7m) for a localization 

area extending 200 m outside the recorder grid. Thus, it was possible to assess the spatial distribution 

of calling gibbon groups within an area of 5 km2. This addresses one of the concerns raised by Rawson 

(2010), where he criticized the uncertainties of triangulation accuracies in conventional gibbon surveys 

with human listening posts. ALS, as opposed to these conventional methods, is not prone to 

localization inaccuracies due to subjectivity and based on the experience of researchers. What is 

important, however, is to assure correct time-synchronization between the individual recording units, 

as all errors in the time difference of arrival (TDOA) of the acoustic signal can lead to errors in the 

triangulations. 

Another aspect that Rawson (2010) criticized in traditional point count methods is the somewhat 

arbitrary convention that calls heard 500 m or more apart from each other are considered to belong 

to different groups of gibbons. This is problematic if the territory of the studied gibbons does not 

conform to the assumed circular territory of approximately 0.20 km2 in size. Using the calls recorded 

by the ALS, I was able to distinguish individuals through a combination of spatial information and 

idiosyncrasies in female great call structures. 86% of all detected great calls could be assigned to one 

of the 15 identified individuals. If solely the spatial information would have been used, it is likely that 
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some of the individuals found at the margin of the study area would not have been recognized as 

separate individuals. Some individuals that have been detected on different days at locations more 

than 500 m apart, for example Ratu, would have been falsely classified as different individuals, while 

calls from different individuals detected at similar locations would have been pooled together as one 

individual. In the latter case, the changes in territory ownership observed in the southern part of the 

study area would not have been discovered. In a broader context, the combined method for caller 

identification is less likely to over- or underestimate group densities. The gain in identification accuracy, 

however, needs to be weighted up against the additional initial time investment to distinguish and 

describe different individuals in the study area. For continuous or repeated surveys in the same area, 

it is certainly an investment worth making as previously identified individuals can be recognized and 

changes in territory ownerships become visible. If the aim is, however, a quick one-time assessment 

of gibbon group densities in a large survey area, researchers might prefer a less time intensive method 

and accept higher chances of under- or overestimating group densities. With further research, it may 

be possible to develop a reliable unsupervised identification algorithm for gibbons and also other 

species of interest. 

Not only the increased output on recorded song bouts and increased accuracy of localizations and 

individual identification, but also the fact that the monitoring effort of gibbon calling activity covers 

the entire extent of the study area at all times speaks in favour of the ALS. This opens opportunities to 

investigate interactive and competitive calling behaviours between gibbon groups. Furthermore, the 

collection of additional acoustic data comes with practically no additional effort. A ten days long survey 

does not require a higher effort than a five days long one, let aside the analysis of the additional data 

recorded. Therefore, I conclude that it is a good tool in semi-long-term studies of several weeks or 

months. 

 

4.3 Limitations and challenges of automated PAM and ALS 

With so many advantages over conventional methods in gibbon studies, what are the limitations of 

automated PAM and ALS to consider? 

First of all, PAM is naturally restricted to the study of acoustically conspicuous species and individuals. 

In the case of the gibbons in Suaq Balimbing, it was only possible to assess the density of territory 

holding groups but not population density, because juveniles and individuals without a home range do 

not produce the great calls this study focused on. Therefore, group sizes and the number of rovers was 

unknown. It is also only possible to obtain data that is in some way related to the production of the 

vocalizations of interest. Studies for example on feeding ecology or social interactions of the subjects 

will still require field observations. 

For long-term studies with ALS, researchers will be challenged by the question how to store such a 

large amount of data. The sound recordings made with the ALS in Suaq Balimbing during one year 

resulted in more than 20 TB of audio data. Despite technological progress making storage devices with 

high capacities more and more affordable, it can still be costly to store and back up data of this volume. 

Processing the collected acoustic data is not less challenging. The use of a machine learning approach 

for the detection of acoustic events of interest was shown to be a real advantage in terms of time 

efficiency over manual scanning and labeling. Automated PAM studies on a variety of animal species 

developed and successfully applied detection and classification algorithms (e.g. Ganchev & Potamitis, 

2007; Ganchev et al., 2015; Kalan et al., 2015). However, there are no universal software packages that 

can be used to detect and classify sounds of a wide range of species from different study areas. Most 



  5. Conclusion 

31 
 

studies developed their own algorithms tailored to their purpose. In order to make PAM more 

accessible to biologists and conservationists with limited programming skills, it would be highly 

desirable to develop a common framework facilitating organized storage and access of acoustic data, 

development of detectors and classifiers and use of existing algorithms as well as providing tools to 

visualize and analyze the acoustic data - similar to what was offered by the acoustic platform used in 

this study. 

 

 

5. Conclusion 

This study showed that with ALS, it was possible to assess group densities and home ranges of white-

handed gibbons, and to collect quantitative data related to their vocal and ranging behaviour. The 

methods applied in this study can be adopted for future studies on other vocally conspicuous and 

territorial species such as other gibbon species and birds. In this case, the size and set up of the 

recorder grid would need to be adjusted to the vocal and behavioural characteristics of the study 

species and a species-specific detection algorithm may need to be developed. Although the initial time 

investment for the development of a tailored detection algorithm as well as the identification of 

individuals is relatively high, ALS is an objective and reliable method for population density and 

territory assessments, allowing the collection of data over a variety of spatial and temporal extents. It 

appears also suitable for the comparison of findings between study sites, different habitat types or to 

monitor changes over time. 

On the analysis side, the development of a common framework for the processing and analysis of 

acoustic data would be desirable in order to make ALS and PAM more applicable for conservationists 

and ecologists with limited programming skills. This would benefit various applications in the context 

of wildlife and habitat conservation. As PAM is not limited to the collection of data on one target 

species at a time, all vocal species in a study area can potentially be monitored. Therefore, PAM can 

be used for general biodiversity assessments and ecosystem health studies relying on the analysis of a 

habitat’s soundscape. It can also be used to monitor human activities, such as illegal logging activities 

in protected habitats. Such observations allow conservationists to target conservation efforts in the 

areas of most concern.  
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Appendix I 

 

 

Figure 14: A recording unit of the ALS set up in Suaq Balimbing. On top (black) is the GPS device for time-synchronization, a 
metal cover shields the recorder from rain and falling debris. The recorder (Song Meter SM3, Wildlife Acoustics Inc.) is 
connected via cable to a SMX-II microphone deployed in 10 m height in the canopy and is powered by a 12 V, 18 Ah dry gel 
battery (inside yellow case). The battery was charged by a 50 W solar panel. (Photo credit: Urs Wipfli, 2017) 

 

Table 8: Validation results of the great call detection algorithm. Detections by the algorithm were compared to manually 
labeled data from 22 hours (427.05 recording hours by 20 recorders). GC: great call, tp: true positive, fp: false positive, fn: 
false negative. 

 
Validation set 1 Validation set 2 Summary 

Date/time analyzed 24.01.2017 05:00-19:00 25.01.2017 05:00-13:00  
Day hours/recording 
hours 

14h/271.05h 8h/156h 22h/427.05h 

Manual GC detections 269 544 813 
# total detections 521 349 870 
# GC events 78 109 187 
# songs 16 21 37 
# tp detections 139 (26.7%) 336 (96.3%) 475 (54.6%) 
# fp detections 382 (73.3%) 13 (3.7%) 395 (45.4%) 
# fn detections 130 (48.3%) 208 (38.2%) 338 (41.6%) 
# call events detected 57/78 (73.1%) 98/109 (90.0%) 155/187 (82.9%) 
# songs detected 15/16 (93.8%) 19/21 (90.4%) 34/37 (91.9%) 
Comment All missed call events 

outside grid 
All missed call events 
outside grid 
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Figure 15: Polygon outlines: territories of the gibbon groups in Suaq Balimbing. Highlighted in red: Calliope; olive green: 
Inna. Points show locations of songs given in each month, making visible the shifts in the territory occupation for the groups 
in the south of the study area. Orange arrow: Filippa; light green arrow: Jolli.   



  Appendix II 

40 
 

Appendix II 

Identification catalogue of the 15 individuals found within hearing distance from the study area in Suaq 

Balimbing. Although the number of notes could differ between calls of the same individual, general 

characteristics of the great call structure showed constant similarities within and across days and could 

be distinguished from other individuals. Orange squares indicate the second note and the climax note 

of the call. All spectrograms are displayed here within the frequency range of 500 – 1500 Hz. 
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